1 Appendix

(include the corrections in Lemma 2 and Theorem 1)

1.1 Proof of Lemma 2

Recall our optimization problem:
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The proof of the global minimizers is given by Lemmas 2.4 and 2.8 in [1]. Below we provide the proof of
the sufficient condition for strict local minima of problem (1). This is a consequence of the second-order
sufficient condition for optimality in constrained optimization (see Chapter 3 - [2]). Notice that in our case,
the Hessian of the Lagrange function is V2 L(x,~v) = A—~I and the Jacobian of the constraint 27z —1 =0
is J(x) = . Let x. be a stationary point of problem (1). Then x, is a strict local minimum if
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On the other hand, by the definition of A\, _1, we have
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Combining (2), (3) and (4), we conclude v < A,,_1 implies &, is a strict local minimum of problem (1).

It is noteworthy that the necessary condition for local minima of problem (1), following a similar argu-
ment, is given by v < A,,_;. However, it is possible that a strict local minimum associates with v = \,,_1.
For example, consider the 2D-case
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It can be seen that the curvature of the objective function almost coincides with that of the unit sphere
at x, in the above example. The following lemma states the necessary condition for strict local minima of
problem (1):

Lemma 1. If x. is a strict local minimum of problem (1), then either of the following condition holds
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Proof. By definition of strict local minima, for any € S"~! such that 0 < ||z — .|| < € with sufficiently
small € > 0, we have
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Denote d =  — @, = §, + d,, where d, is collinear to x, and §, is orthogonal to x,. The last inequality
becomes
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Using the fact that ||8]|> = [|d,]|* + [|6.]|* and

L=|” = [z« +8|* = l|lz.||* + |8]|* + 2216 = 1+ |6, ||* + |6, |* + 2276,

we obtain 8, = — ||0, || 2. and [|6. | = /2]|0.]| — [|6.]|>. Substituting back into (5) yields
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where w is the unit-length vector that is collinear to d . Now since ||d,|| can be chosen arbitrarily small and
u can be chosen in any direction that is orthogonal to @., taking ||d,| — 0 in (6) yields u” Au > ~ for any
unit-length vector w L @,. Thus, from (4), we conclude that \,_; > v. Furthermore, if \,,_; = u” Au = ,
then it holds that

16| 2T Az, —21/2 |6, — |02 *2T Au — |6, ]| T Au >0 for all ||8,]. (7)

Notice that if 27 Au > 0, we can always choose sufficiently small ||8, || so that the second term (O(||5I||1/2))
on the LHS of (7) dominates the other terms (O(||d;||)), which in turn forces the LHS to be negative.
Otherwise, if 27 Au < 0, we can replace u by —u and follows the same argument to expose the contradiction.
Therefore, it must hold that 7 Au = 0 in the case u” Au = ~. In addition, substituting these quantities
back into (7) yields z Az, > uT Au. O

1.2 Proof of Lemma 4

This lemma stems from the fact that the first-order derivative of the function f(x) = H;—” is given by
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1.3 Proof of Lemma 5
We have
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is monotonically decreasing. Denote f(a) = maxi<ij<p—1 Ry Consider

For v < A, the function
the following three cases:
-If1—aX,—1 > 1—a); >0, then (8) becomes
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-If1—aX <1—aX,—1 <0, then (8) becomes
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In summary, we have
- If )\1 + )\n—l S 0, then

-If Ay + X\,_1 > 0, then
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