## 1 Appendix

(include the corrections in Lemma 2 and Theorem 1)

### 1.1 Proof of Lemma 2

Recall our optimization problem:

$$
\begin{equation*}
\min _{\boldsymbol{x} \in \mathbb{R}^{n}} \frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}^{T} \boldsymbol{x} \quad \text { subject to }\|\boldsymbol{x}\|^{2}=1 \tag{1}
\end{equation*}
$$

The proof of the global minimizers is given by Lemmas 2.4 and 2.8 in [1]. Below we provide the proof of the sufficient condition for strict local minima of problem (1). This is a consequence of the second-order sufficient condition for optimality in constrained optimization (see Chapter 3 - [2]). Notice that in our case, the Hessian of the Lagrange function is $\nabla_{\boldsymbol{x} \boldsymbol{x}}^{2} \mathcal{L}(\boldsymbol{x}, \gamma)=\boldsymbol{A}-\gamma \boldsymbol{I}$ and the Jacobian of the constraint $\boldsymbol{x}^{T} \boldsymbol{x}-1=0$ is $\boldsymbol{J}(\boldsymbol{x})=\boldsymbol{x}$. Let $\boldsymbol{x}_{*}$ be a stationary point of problem (1). Then $\boldsymbol{x}_{*}$ is a strict local minimum if

$$
\begin{equation*}
\boldsymbol{y}^{T}(\boldsymbol{A}-\gamma \boldsymbol{I}) \boldsymbol{y}>0 \quad \forall \boldsymbol{y} \text { s.t. } \boldsymbol{y} \perp \boldsymbol{x}_{*}\left(\text { i.e. } \boldsymbol{y}^{T} \boldsymbol{x}_{*}=0\right) \tag{2}
\end{equation*}
$$

Since $\boldsymbol{P}_{\boldsymbol{x}_{*}}^{\perp} \boldsymbol{y}=\boldsymbol{y}$ for all $\boldsymbol{y} \perp \boldsymbol{x}$, we have

$$
\begin{aligned}
\boldsymbol{y}^{T}(\boldsymbol{A}-\gamma \boldsymbol{I}) \boldsymbol{y} & =\boldsymbol{y}^{T} \boldsymbol{P}_{\boldsymbol{x}_{*}}^{\perp}(\boldsymbol{A}-\gamma \boldsymbol{I}) \boldsymbol{P}_{\boldsymbol{x}_{*}}^{\perp} \boldsymbol{y} \\
& =\boldsymbol{y}^{T} \boldsymbol{P}_{\boldsymbol{x}_{*}}^{\perp} \boldsymbol{A} \boldsymbol{P}_{\boldsymbol{x}_{*}}^{\perp} \boldsymbol{y}-\gamma \boldsymbol{y}^{T} \boldsymbol{P}_{\boldsymbol{x}_{*}}^{\perp} \boldsymbol{P}_{\boldsymbol{x}_{*}}^{\perp} \boldsymbol{y} \\
& =\boldsymbol{y}^{T}\left(\boldsymbol{P}_{\boldsymbol{x}_{*}}^{\perp} \boldsymbol{A} \boldsymbol{P}_{\boldsymbol{x}_{*}}^{\perp}-\gamma \boldsymbol{I}\right) \boldsymbol{y}
\end{aligned}
$$

Thus, condition (2) is equivalent to $\boldsymbol{y}^{T}\left(\boldsymbol{P}_{\boldsymbol{x}_{*}}^{\perp} \boldsymbol{A} \boldsymbol{P}_{\boldsymbol{x}_{*}}^{\perp}-\gamma \boldsymbol{I}\right) \boldsymbol{y}>0$, or

$$
\begin{equation*}
\gamma<\frac{\boldsymbol{y}^{T} \boldsymbol{P}_{\boldsymbol{x}_{*}}^{\perp} \boldsymbol{A} \boldsymbol{P}_{\boldsymbol{x}_{*}}^{\perp} \boldsymbol{y}}{\|\boldsymbol{y}\|^{2}} \quad \forall \boldsymbol{y} \text { s.t. } \boldsymbol{y} \perp \boldsymbol{x}_{*} . \tag{3}
\end{equation*}
$$

On the other hand, by the definition of $\lambda_{n-1}$, we have

$$
\begin{equation*}
\lambda_{n-1}=\min _{\boldsymbol{y} \perp \boldsymbol{x}_{*}} \frac{\boldsymbol{y}^{T} \boldsymbol{P}_{\boldsymbol{x}_{*}}^{\perp} \boldsymbol{A} \boldsymbol{P}_{\boldsymbol{x}_{*}}^{\perp} \boldsymbol{y}}{\|\boldsymbol{y}\|^{2}}=\min _{\boldsymbol{y} \perp \boldsymbol{x}_{*}} \frac{\boldsymbol{y}^{T} \boldsymbol{A} \boldsymbol{y}}{\|\boldsymbol{y}\|^{2}}=\min _{\substack{\boldsymbol{y} \perp \boldsymbol{x}_{*} \\\|\boldsymbol{y}\|=1}} \boldsymbol{y}^{T} \boldsymbol{A} \boldsymbol{y} \tag{4}
\end{equation*}
$$

Combining (2), (3) and (4), we conclude $\gamma<\lambda_{n-1}$ implies $\boldsymbol{x}_{*}$ is a strict local minimum of problem (1).
It is noteworthy that the necessary condition for local minima of problem (1), following a similar argument, is given by $\gamma \leq \lambda_{n-1}$. However, it is possible that a strict local minimum associates with $\gamma=\lambda_{n-1}$. For example, consider the 2D-case

$$
\boldsymbol{A}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right], \quad \boldsymbol{x}_{*}=\left[\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{c}
\sqrt{2} \\
\sqrt{2}
\end{array}\right], \quad \gamma=\lambda_{n-1}=1
$$

It can be seen that the curvature of the objective function almost coincides with that of the unit sphere at $\boldsymbol{x}_{*}$ in the above example. The following lemma states the necessary condition for strict local minima of problem (1):

Lemma 1. If $\boldsymbol{x}_{*}$ is a strict local minimum of problem (1), then either of the following condition holds

- $\gamma<\lambda_{n-1}$
- $\boldsymbol{x}_{*}^{T} \boldsymbol{A} \boldsymbol{x}_{*}>\boldsymbol{u}^{T} \boldsymbol{A} \boldsymbol{u}=\gamma=\lambda_{n-1}$ and $\boldsymbol{x}_{*}^{T} \boldsymbol{A} \boldsymbol{u}=0$ for $\boldsymbol{u}=\underset{\substack{\boldsymbol{y} \perp \boldsymbol{x}_{*} \\\|\boldsymbol{y}\|=1}}{\operatorname{argmin}} \boldsymbol{y}^{T} \boldsymbol{A} \boldsymbol{y}$.

Proof. By definition of strict local minima, for any $\boldsymbol{x} \in \mathcal{S}^{n-1}$ such that $0<\left\|\boldsymbol{x}-\boldsymbol{x}_{*}\right\|<\epsilon$ with sufficiently small $\epsilon>0$, we have

$$
\begin{array}{rlrl}
0 & <f(\boldsymbol{x})-f\left(\boldsymbol{x}_{*}\right) \\
& =\left(\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}^{T} \boldsymbol{x}\right)-\left(\frac{1}{2} \boldsymbol{x}_{*}^{T} \boldsymbol{A} \boldsymbol{x}_{*}-\boldsymbol{b}^{T} \boldsymbol{x}_{*}\right) & \\
& =\left(\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}-\left(\boldsymbol{A} \boldsymbol{x}_{*}-\gamma \boldsymbol{x}_{*}\right)^{T} \boldsymbol{x}\right)-\left(\frac{1}{2} \boldsymbol{x}_{*}^{T} \boldsymbol{A} \boldsymbol{x}_{*}-\left(\boldsymbol{A} \boldsymbol{x}_{*}-\gamma \boldsymbol{x}_{*}\right)^{T} \boldsymbol{x}_{*}\right) & \left(\text { since } \boldsymbol{A} \boldsymbol{x}_{*}-\boldsymbol{b}=\gamma \boldsymbol{x}_{*}\right) \\
& =\frac{1}{2}\left(\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}-2 \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}_{*}+\boldsymbol{x}_{*}^{T} \boldsymbol{A} \boldsymbol{x}_{*}-\gamma\left(2 \boldsymbol{x}_{*}^{T} \boldsymbol{x}_{*}-2 \boldsymbol{x}^{T} \boldsymbol{x}_{*}\right)\right) \\
& =\frac{1}{2}\left(\left(\boldsymbol{x}-\boldsymbol{x}_{*}\right)^{T} \boldsymbol{A}\left(\boldsymbol{x}-\boldsymbol{x}_{*}\right)-\gamma\left\|\boldsymbol{x}-\boldsymbol{x}_{*}\right\|^{2}\right) . & \left(\text { since }\|\boldsymbol{x}\|=\left\|\boldsymbol{x}_{*}\right\|=1\right)
\end{array}
$$

Denote $\boldsymbol{\delta}=\boldsymbol{x}-\boldsymbol{x}_{*}=\boldsymbol{\delta}_{x}+\boldsymbol{\delta}_{\perp}$, where $\boldsymbol{\delta}_{x}$ is collinear to $\boldsymbol{x}_{*}$ and $\boldsymbol{\delta}_{\perp}$ is orthogonal to $\boldsymbol{x}_{*}$. The last inequality becomes

$$
\begin{equation*}
\gamma<\frac{\boldsymbol{\delta}^{T} \boldsymbol{A} \boldsymbol{\delta}}{\|\boldsymbol{\delta}\|^{2}}=\frac{\boldsymbol{\delta}_{x}^{T} \boldsymbol{A} \boldsymbol{\delta}_{x}+2 \boldsymbol{\delta}_{x}^{T} \boldsymbol{A} \boldsymbol{\delta}_{\perp}+\boldsymbol{\delta}_{\perp} \boldsymbol{A} \boldsymbol{\delta}_{\perp}}{\|\boldsymbol{\delta}\|^{2}} \tag{5}
\end{equation*}
$$

Using the fact that $\|\boldsymbol{\delta}\|^{2}=\left\|\boldsymbol{\delta}_{x}\right\|^{2}+\left\|\boldsymbol{\delta}_{\perp}\right\|^{2}$ and

$$
1=\|\boldsymbol{x}\|^{2}=\left\|\boldsymbol{x}_{*}+\boldsymbol{\delta}\right\|^{2}=\left\|\boldsymbol{x}_{*}\right\|^{2}+\|\boldsymbol{\delta}\|^{2}+2 \boldsymbol{x}_{*}^{T} \boldsymbol{\delta}=1+\left\|\boldsymbol{\delta}_{x}\right\|^{2}+\left\|\boldsymbol{\delta}_{\perp}\right\|^{2}+2 \boldsymbol{x}_{*}^{T} \boldsymbol{\delta}_{x}
$$

we obtain $\boldsymbol{\delta}_{x}=-\left\|\boldsymbol{\delta}_{x}\right\| \boldsymbol{x}_{*}$ and $\left\|\boldsymbol{\delta}_{\perp}\right\|=\sqrt{2\left\|\boldsymbol{\delta}_{x}\right\|-\left\|\boldsymbol{\delta}_{x}\right\|^{2}}$. Substituting back into (5) yields

$$
\begin{align*}
\gamma & <\frac{\left\|\boldsymbol{\delta}_{x}\right\|^{2} \boldsymbol{x}_{*}^{T} \boldsymbol{A} \boldsymbol{x}_{*}-2\left\|\boldsymbol{\delta}_{x}\right\| \sqrt{2\left\|\boldsymbol{\delta}_{x}\right\|-\left\|\boldsymbol{\delta}_{x}\right\|^{2}} \boldsymbol{x}_{*}^{T} \boldsymbol{A} \boldsymbol{u}+\left(2\left\|\boldsymbol{\delta}_{x}\right\|-\left\|\boldsymbol{\delta}_{x}\right\|^{2}\right) \boldsymbol{u}^{T} \boldsymbol{A} \boldsymbol{u}}{2\left\|\boldsymbol{\delta}_{x}\right\|} \\
& =\frac{1}{2}\left(\left\|\boldsymbol{\delta}_{x}\right\| \boldsymbol{x}_{*}^{T} \boldsymbol{A} \boldsymbol{x}_{*}-2 \sqrt{2\left\|\boldsymbol{\delta}_{x}\right\|-\left\|\boldsymbol{\delta}_{x}\right\|^{2}} \boldsymbol{x}_{*}^{T} \boldsymbol{A} \boldsymbol{u}-\left\|\boldsymbol{\delta}_{x}\right\| \boldsymbol{u}^{T} \boldsymbol{A} \boldsymbol{u}\right)+\boldsymbol{u}^{T} \boldsymbol{A} \boldsymbol{u} \tag{6}
\end{align*}
$$

where $\boldsymbol{u}$ is the unit-length vector that is collinear to $\boldsymbol{\delta}_{\perp}$. Now since $\left\|\boldsymbol{\delta}_{x}\right\|$ can be chosen arbitrarily small and $\boldsymbol{u}$ can be chosen in any direction that is orthogonal to $\boldsymbol{x}_{*}$, taking $\left\|\boldsymbol{\delta}_{x}\right\| \rightarrow 0$ in (6) yields $\boldsymbol{u}^{T} \boldsymbol{A} \boldsymbol{u} \geq \gamma$ for any unit-length vector $\boldsymbol{u} \perp \boldsymbol{x}_{*}$. Thus, from (4), we conclude that $\lambda_{n-1} \geq \gamma$. Furthermore, if $\lambda_{n-1}=\boldsymbol{u}^{T} \boldsymbol{A} \boldsymbol{u}=\gamma$, then it holds that

$$
\begin{equation*}
\left\|\boldsymbol{\delta}_{x}\right\| \boldsymbol{x}_{*}^{T} \boldsymbol{A} \boldsymbol{x}_{*}-2 \sqrt{2\left\|\boldsymbol{\delta}_{x}\right\|-\left\|\boldsymbol{\delta}_{x}\right\|^{2}} \boldsymbol{x}_{*}^{T} \boldsymbol{A} \boldsymbol{u}-\left\|\boldsymbol{\delta}_{x}\right\| \boldsymbol{u}^{T} \boldsymbol{A} \boldsymbol{u}>0 \quad \text { for all }\left\|\boldsymbol{\delta}_{x}\right\| \tag{7}
\end{equation*}
$$

Notice that if $\boldsymbol{x}_{*}^{T} \boldsymbol{A} \boldsymbol{u}>0$, we can always choose sufficiently small $\left\|\boldsymbol{\delta}_{x}\right\|$ so that the second term $\left(\mathcal{O}\left(\left\|\boldsymbol{\delta}_{x}\right\|^{1 / 2}\right)\right)$ on the LHS of (7) dominates the other terms $\left(\mathcal{O}\left(\left\|\boldsymbol{\delta}_{x}\right\|\right)\right)$, which in turn forces the LHS to be negative. Otherwise, if $\boldsymbol{x}_{*}^{T} \boldsymbol{A} \boldsymbol{u}<0$, we can replace $\boldsymbol{u}$ by $-\boldsymbol{u}$ and follows the same argument to expose the contradiction. Therefore, it must hold that $\boldsymbol{x}_{*}^{T} \boldsymbol{A} \boldsymbol{u}=0$ in the case $\boldsymbol{u}^{T} \boldsymbol{A} \boldsymbol{u}=\gamma$. In addition, substituting these quantities back into (7) yields $\boldsymbol{x}_{*}^{T} \boldsymbol{A} \boldsymbol{x}_{*}>\boldsymbol{u}^{T} \boldsymbol{A} \boldsymbol{u}$.

### 1.2 Proof of Lemma 4

This lemma stems from the fact that the first-order derivative of the function $f(\boldsymbol{x})=\frac{\boldsymbol{x}}{\|\boldsymbol{x}\|}$ is given by

$$
\nabla f(\boldsymbol{x})=\frac{1}{\|\boldsymbol{x}\|} \boldsymbol{I}-\frac{1}{\|\boldsymbol{x}\|^{3}} \boldsymbol{x} \boldsymbol{x}^{T}
$$

### 1.3 Proof of Lemma 5

We have

$$
\begin{equation*}
\alpha_{*}=\underset{\substack{\alpha>0 \\ \alpha\left(\lambda_{1}+\gamma\right)<2}}{\operatorname{argmin}} \max _{1 \leq i \leq n-1} \frac{\left|1-\alpha \lambda_{i}\right|}{1-\alpha \gamma} \tag{8}
\end{equation*}
$$

For $\gamma<\lambda$, the function $\frac{1-\alpha \lambda}{1-\alpha \gamma}$ is monotonically decreasing. Denote $f(\alpha)=\max _{1 \leq i \leq n-1} \frac{\left|1-\alpha \lambda_{i}\right|}{1-\alpha \gamma}$. Consider the following three cases:

- If $1-\alpha \lambda_{n-1} \geq 1-\alpha \lambda_{1} \geq 0$, then (8) becomes

$$
\begin{aligned}
\min _{\alpha} f(\alpha) & =\min _{\alpha \lambda_{1} \leq 1} \frac{1-\alpha \lambda_{n-1}}{1-\alpha \gamma} \\
& = \begin{cases}f\left(\frac{1}{\lambda_{1}}\right)=\frac{\lambda_{1}-\lambda_{n-1}}{\lambda_{1}-\gamma} & \text { if } \lambda_{1}>0 \\
f(\infty)=\frac{\lambda_{n-1}}{\gamma} & \text { otherwise }\end{cases}
\end{aligned}
$$

- If $1-\alpha \lambda_{1} \leq 1-\alpha \lambda_{n-1} \leq 0$, then (8) becomes

$$
\min _{\alpha} f(\alpha)=\min _{\alpha \lambda_{n-1} \geq 1} \frac{\alpha \lambda_{1}-1}{1-\alpha \gamma}=f\left(\frac{1}{\lambda_{n-1}}\right)=\frac{\lambda_{1}-\lambda_{n-1}}{\lambda_{n-1}-\gamma}
$$

- If $\left\{\begin{array}{l}1-\alpha \lambda_{1} \leq 0 \\ 1-\alpha \lambda_{n-1} \geq 0\end{array} \quad\right.$, then (8) becomes

$$
\begin{aligned}
& \min _{\alpha} f(\alpha)=\min _{\alpha\left(\lambda_{1}+\lambda_{n-1}\right) \leq 2}\left\{\frac{\alpha \lambda_{1}-1}{1-\alpha \gamma}, \frac{1-\alpha \lambda_{n-1}}{1-\alpha \gamma}\right\} \\
& = \begin{cases}f\left(\frac{2}{\lambda_{1}+\lambda_{n-1}}\right)=\frac{\lambda_{1}-\lambda_{n-1}}{\lambda_{1}+\lambda_{n-1}-2 \gamma} & \text { if } \alpha\left(\lambda_{1}+\lambda_{n-1}\right)<2 \\
f(\infty)=\frac{\lambda_{n-1}}{\gamma} & \text { otherwise }\end{cases}
\end{aligned}
$$

In summary, we have

- If $\lambda_{1}+\lambda_{n-1} \leq 0$, then

$$
\min _{\alpha} f(\alpha)=\min \left\{f\left(\frac{1}{\lambda_{1}}\right), f(\infty)\right\}=f(\infty)
$$

- If $\lambda_{1}+\lambda_{n-1}>0$, then

$$
\begin{aligned}
\min _{\alpha} f(\alpha) & =\min \left\{f\left(\frac{1}{\lambda_{1}}\right), f\left(\frac{1}{\lambda_{n-1}}\right), f\left(\frac{2}{\lambda_{1}+\lambda_{n-1}}\right)\right\} \\
& =f\left(\frac{2}{\lambda_{1}+\lambda_{n-1}}\right)
\end{aligned}
$$

## References

[1] Danny C Sorensen, "Newton's method with a model trust region modification," SIAM Journal on Numerical Analysis, vol. 19, no. 2, pp. 409-426, 1982.
[2] D. P. Bertsekas, Nonlinear programming, Athena Scientific optimization and computation series. Athena Scientific, 1999.

