
1 Appendix

(include the corrections in Lemma 2 and Theorem 1)

1.1 Proof of Lemma 2

Recall our optimization problem:

min
x∈Rn

1

2
xTAx− bTx subject to ‖x‖2 = 1, (1)

The proof of the global minimizers is given by Lemmas 2.4 and 2.8 in [1]. Below we provide the proof of
the sufficient condition for strict local minima of problem (1). This is a consequence of the second-order
sufficient condition for optimality in constrained optimization (see Chapter 3 - [2]). Notice that in our case,
the Hessian of the Lagrange function is ∇2

xxL(x, γ) = A−γI and the Jacobian of the constraint xTx−1 = 0
is J(x) = x. Let x∗ be a stationary point of problem (1). Then x∗ is a strict local minimum if

yT (A− γI)y > 0 ∀ y s.t. y ⊥ x∗ (i.e. yTx∗ = 0). (2)

Since P⊥x∗
y = y for all y ⊥ x, we have

yT (A− γI)y = yTP⊥x∗
(A− γI)P⊥x∗

y

= yTP⊥x∗
AP⊥x∗

y − γyTP⊥x∗
P⊥x∗

y

= yT (P⊥x∗
AP⊥x∗

− γI)y.

Thus, condition (2) is equivalent to yT (P⊥x∗
AP⊥x∗

− γI)y > 0, or

γ <
yTP⊥x∗

AP⊥x∗
y

‖y‖2
∀ y s.t. y ⊥ x∗. (3)

On the other hand, by the definition of λn−1, we have

λn−1 = min
y⊥x∗

yTP⊥x∗
AP⊥x∗

y

‖y‖2
= min

y⊥x∗

yTAy

‖y‖2
= min

y⊥x∗
‖y‖=1

yTAy. (4)

Combining (2), (3) and (4), we conclude γ < λn−1 implies x∗ is a strict local minimum of problem (1).
It is noteworthy that the necessary condition for local minima of problem (1), following a similar argu-

ment, is given by γ ≤ λn−1. However, it is possible that a strict local minimum associates with γ = λn−1.
For example, consider the 2D-case

A =

2 1

1 2

 , x∗ =

1/
√

2

1/
√

2

 , b =

√2
√

2

 , γ = λn−1 = 1.

It can be seen that the curvature of the objective function almost coincides with that of the unit sphere
at x∗ in the above example. The following lemma states the necessary condition for strict local minima of
problem (1):

Lemma 1. If x∗ is a strict local minimum of problem (1), then either of the following condition holds

• γ < λn−1

• xT∗Ax∗ > uTAu = γ = λn−1 and xT∗Au = 0 for u = argmin
y⊥x∗
‖y‖=1

yTAy.
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Proof. By definition of strict local minima, for any x ∈ Sn−1 such that 0 < ‖x− x∗‖ < ε with sufficiently
small ε > 0, we have

0 < f(x)− f(x∗)

=
(1

2
xTAx− bTx

)
−
(1

2
xT∗Ax∗ − bTx∗

)
=
(1

2
xTAx− (Ax∗ − γx∗)Tx

)
−
(1

2
xT∗Ax∗ − (Ax∗ − γx∗)Tx∗

)
(since Ax∗ − b = γx∗)

=
1

2

(
xTAx− 2xTAx∗ + xT∗Ax∗ − γ(2xT∗ x∗ − 2xTx∗)

)
=

1

2

(
(x− x∗)TA(x− x∗)− γ ‖x− x∗‖2

)
. (since ‖x‖ = ‖x∗‖ = 1)

Denote δ = x − x∗ = δx + δ⊥, where δx is collinear to x∗ and δ⊥ is orthogonal to x∗. The last inequality
becomes

γ <
δTAδ

‖δ‖2
=
δTxAδx + 2δTxAδ⊥ + δ⊥Aδ⊥

‖δ‖2
. (5)

Using the fact that ‖δ‖2 = ‖δx‖2 + ‖δ⊥‖2 and

1 = ‖x‖2 = ‖x∗ + δ‖2 = ‖x∗‖2 + ‖δ‖2 + 2xT∗ δ = 1 + ‖δx‖2 + ‖δ⊥‖2 + 2xT∗ δx

we obtain δx = −‖δx‖x∗ and ‖δ⊥‖ =

√
2 ‖δx‖ − ‖δx‖2. Substituting back into (5) yields

γ <
‖δx‖2 xT∗Ax∗ − 2 ‖δx‖

√
2 ‖δx‖ − ‖δx‖2xT∗Au+ (2 ‖δx‖ − ‖δx‖2)uTAu

2 ‖δx‖

=
1

2

(
‖δx‖xT∗Ax∗ − 2

√
2 ‖δx‖ − ‖δx‖2xT∗Au− ‖δx‖uTAu

)
+ uTAu, (6)

where u is the unit-length vector that is collinear to δ⊥. Now since ‖δx‖ can be chosen arbitrarily small and
u can be chosen in any direction that is orthogonal to x∗, taking ‖δx‖ → 0 in (6) yields uTAu ≥ γ for any
unit-length vector u ⊥ x∗. Thus, from (4), we conclude that λn−1 ≥ γ. Furthermore, if λn−1 = uTAu = γ,
then it holds that

‖δx‖xT∗Ax∗ − 2

√
2 ‖δx‖ − ‖δx‖2xT∗Au− ‖δx‖uTAu > 0 for all ‖δx‖ . (7)

Notice that if xT∗Au > 0, we can always choose sufficiently small ‖δx‖ so that the second term (O(‖δx‖1/2))
on the LHS of (7) dominates the other terms (O(‖δx‖)), which in turn forces the LHS to be negative.
Otherwise, if xT∗Au < 0, we can replace u by −u and follows the same argument to expose the contradiction.
Therefore, it must hold that xT∗Au = 0 in the case uTAu = γ. In addition, substituting these quantities
back into (7) yields xT∗Ax∗ > u

TAu.

1.2 Proof of Lemma 4

This lemma stems from the fact that the first-order derivative of the function f(x) = x
‖x‖ is given by

∇f(x) =
1

‖x‖
I − 1

‖x‖3
xxT .

1.3 Proof of Lemma 5

We have

α∗ = argmin
α>0

α(λ1+γ)<2

max
1≤i≤n−1

|1− αλi|
1− αγ

(8)
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For γ < λ, the function 1−αλ
1−αγ is monotonically decreasing. Denote f(α) = max1≤i≤n−1

|1−αλi|
1−αγ . Consider

the following three cases:
- If 1− αλn−1 ≥ 1− αλ1 ≥ 0, then (8) becomes

min
α
f(α) = min

αλ1≤1

1− αλn−1
1− αγ

=

{
f( 1

λ1
) = λ1−λn−1

λ1−γ if λ1 > 0

f(∞) = λn−1

γ otherwise

- If 1− αλ1 ≤ 1− αλn−1 ≤ 0, then (8) becomes

min
α
f(α) = min

αλn−1≥1

αλ1 − 1

1− αγ
= f

( 1

λn−1

)
=
λ1 − λn−1
λn−1 − γ

- If

{
1− αλ1 ≤ 0

1− αλn−1 ≥ 0
, then (8) becomes

min
α
f(α) = min

α(λ1+λn−1)≤2

{
αλ1 − 1

1− αγ
,

1− αλn−1
1− αγ

}
=

{
f( 2

λ1+λn−1
) = λ1−λn−1

λ1+λn−1−2γ if α(λ1 + λn−1) < 2

f(∞) = λn−1

γ otherwise

In summary, we have
- If λ1 + λn−1 ≤ 0, then

min
α
f(α) = min

{
f
( 1

λ1

)
, f(∞)

}
= f(∞)

- If λ1 + λn−1 > 0, then

min
α
f(α) = min

{
f
( 1

λ1

)
, f
( 1

λn−1

)
, f
( 2

λ1 + λn−1

)}
= f

( 2

λ1 + λn−1

)
.
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